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Abstract Recently, a correspondence has been shown to exist between the structure of a
single Standard Model generation of elementary particles and the properties of the Clifford
algebra of nonrelativistic phase space. Here, this correspondence is spelled out in terms of
phase-space variables. Thus, a phase-space interpretation of the connections between lep-
tons, quarks and their antiparticles is proposed, in particular providing a timeless alternative
to the standard Stückelberg-Feynman interpretation. The issue of the additivity of canonical
momenta is raised and argued to be intimately related to the unobservability of free quarks
and the emergence of mesons and baryons.

Keywords Quantum geometry · Phase space · Clifford algebra · Structure of Standard
Model generation

1 Introduction

In the standard formalism used for the description of elementary particles, transformations
between observed particles are given within the context of various symmetry groups, such
as SU(2), SU(3), etc. In particular, transformations between particles and antiparticles are
effected via complex conjugation, with antiparticles belonging to complex-conjugate repre-
sentations of the symmetry groups in question. Complex conjugation is also needed when
discussing time reversal, e.g. in the time-dependent Schrödinger equation. Thus, the ex-
istence of particles and antiparticles appears to be closely related to the existence of the
macroscopic concept of external time. And indeed, Stückelberg and Feynman interpreted
antiparticles as ‘particles moving backward in time’.

In quantum gravity, however, the concept of external time is—as argued by many (e.g.
[6, 8, 10])—presumably the first notion to be discarded. In fact, ‘time’ is never measured
directly, we always measure positions, be it positions of clock hands, or positions of other
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groups of particles. Ultimately, we deal with relative positions only. Consequently, the ‘flow
of time’ may be replaced by the observed regular changes in the correlations between posi-
tions of (groups of) particles [1] (regardless of which of our senses they affect). This is what
astronomers actually do: they define time through changes in the positions of astronomical
objects [3]. Obviously, at the deep level and irrespectively of this procedure, there should ex-
ist something that time originates from. If it is not a classical time, it might be its quantized
version, a quantized version of changes in objects’ relative positions, or something much
more involved.

Now, when the external time of the Schrödinger equation vanishes from the formalism (in
some approximation being presumably superseded by such changes in particles’ positions),
the rationale for complex numbers in quantum gravity seems to vanish as well [2]. What
happens then to the particle-antiparticle quantum degree of freedom? Obviously, we do not
expect it to vanish. Quantum gravity, just as the ordinary quantum description of Nature,
is believed to be complex. In fact, in any quantum approach the ‘i’ should enter the game
through the quantum-mechanical position-momentum commutation relations, with position
and momentum treated very symmetrically. The continuing presence of ‘i’ in the mathe-
matical structure not involving explicit time variable suggests that it should be possible to
interpret the existence of both particles and antiparticles also from the point of view of phase
space alone, i.e. without an introduction of the concept of (external) time. Such an interpre-
tation would shift our vantage point significantly, and could be useful in our search for a
proper approach to (timeless) quantum gravity.

Keeping in mind that quantum mechanics ‘lives’ in phase space, I argued in a couple of
recent papers (e.g. [12–15]) that viewing phase space as an arena of physics may provide
a clue to ‘space quantization’. At the level of basic assumptions, the relevant ideas differ
from those of the formalism standardly known under the name of ‘phase-space quantiza-
tion’ (see e.g. [11]), however. Specifically, papers [12–15] consider a Dirac-like lineariza-
tion of x2 + p2, with position and momentum satisfying standard commutation relations.
This leads to the appearance of a previously undiscussed discrete structure: the Clifford al-
gebra of nonrelativistic phase space endowed with form x2 + p2. This algebra is interesting
because a part of it might be identified with the charge (isospin, hypercharge) structure of
a single generation of elementary fermions in the Standard Model [5, 9]. In fact, the tran-
sition from nonrelativistic quantum phase space to its Clifford algebra may be regarded as
a small step towards the quantization of ‘space’. The main difference with respect to other
approaches to quantum gravity is that here one deals with the phase space, not with the or-
dinary configuration space. In such a scheme, the spatial and internal quantum numbers of
elementary particles are thought of as revealing the quantum layer underlying the geometry
of phase space [15], considered as an arena of physics. This line of thinking leads to the idea
that understanding the whole quantum structure manifested via the spectrum of elementary
particles (in particular, their quantized masses and other parameters) should be essentially
equivalent to understanding quantum gravity. An argument that the effects of quantum grav-
ity should appear only when the Planck scale is reached is not really valid. As stressed by
Kiefer [6], quantum gravity effects ‘are not restricted to this scale a priori. The superposi-
tion principle allows the formation of non-trivial gravitational quantum states at any scale.
(. . .) there may be situations where the quantum nature of gravity is visible—even far away
from the Planck scale’. Kiefer then points out that such effects may be seen at cosmological
scales, far beyond the scale of elementary particles. In fact, as long as we are dealing with
quantum description, the issue of scale is simply irrelevant: quantum physics suggests that
the familiar classical concepts of space and time are emergent concepts only, nonexisting
(in the classical form) at the underlying quantum level. Aside from the above arguments, a
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more formal link to gravity seems to be present in the phase-space approach as well: when
viewed from our 3D vantage point, the odd part of the Clifford algebra in question contains,
besides scalars and vectors, also symmetric SO(3) tensors of rank 2 [15].

In [12–14] various transformations between the lepton and quark sectors of the Clifford
algebra were considered. In this note, I would like to discuss the meaning of these transfor-
mations and of their phase-space counterparts somewhat further, so that an understanding
of the whole approach in terms of the concepts of positions and momenta may be deepened,
including an interpretation of the relation between leptons, quarks, and their antiparticles in
phase-space terms.

While our phase-space approach originates from the wish to treat momenta and positions
in a more symmetric way [4], it is obvious that one cannot restore full symmetry between
them: the momenta and positions would be then completely alike, which would be in conflict
with the observed physical reality. In fact, putting aside the connection between the standard
concept of mass and momentum (see [15]), an important difference between momenta and
positions can be identified when one considers composite systems of ordinary particles (by
ordinary particles I mean those particles which may be individually observed, like leptons,
hadrons, and systems built thereof, but not quarks). For such systems, one observes that
the physical momentum of the system is obtained by simply adding the physical momenta
of its components, independently of where (in the classical case) the particles are. On the
other hand, an (approximate) description of the physical position of the whole system is
best provided by certain average of individual positions of its components (i.e., by their
center of mass). Keeping in mind that one of our goals is to describe hadrons as composite
systems made of quarks, it is natural to ensure that additivity of the just discussed or similar
type be included in the description involving quarks. Towards the end of this paper we shall
show that the rôle played by the additivity principle seems to be an important one: if the
proposed ideas are basically correct, it is intimately related to quark unobservability and the
emergence of mesons and baryons.

2 Nonrelativistic Phase Space and Its Clifford Algebra

2.1 Phase Space

Our approach is driven by the old wish to reduce dynamics to geometry, which motivates
the search for a ‘pregeometric algebra’, a quantum-level counterpart of geometry. As al-
ready mentioned, this quantum-level algebra should be capable of relating to geometry such
quantum features of Nature as the existence of internal quantum numbers and the quanti-
zation of particle masses. Thus, the corresponding effective quantum description in phase
space should involve, besides the Planck constant, also a dimensional constant setting the
mass scale. These constants together (plus the speed of light) determine an absolute scale of
momenta and distances, and permit measuring the distances in units of momenta and vice
versa.

For the above reasons, it was argued in [12] that a natural generalization of the O(3)

symmetry of ordinary 3D space to the case of nonrelativistic quantum phase space consists
in considering the invariance of

x2 + p2, (1)

(originally identified with Hamiltonian, but now viewed in geometrical terms), with x and p
being the operators of physical positions and momenta, subject to the condition that

[xk,pl] = iδkl (2)
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is also invariant. With the absolute scales of positions and momenta fixed, the symplectic
rescalings admitted by (2) are obviously no longer allowed.

As is well known, the resulting symmetry is then U(1)⊗SU(3). Note that this symmetry
is in fact present already in the strictly classical case, with Poisson brackets in place of the
commutators.

A straightforward generalization of the set of (1, 2) is obtained by realizing that, since i

is defined only up to a sign, (2) may be replaced by

[xk,pl] = −iδkl, (3)

leading to a different copy of the U(1) ⊗ SU(3) symmetry.
It should also be stressed that the operation of complex conjugation does not connect (2)

with (3). Indeed, using the standard representation pk = −i d
dxk

one obtains that complex
conjugation corresponds to

i → −i, x → x, p → −p. (4)

Under complex conjugation the set of (1, 2) (or alternatively, the set of (1, 3)) remains
therefore invariant.

2.2 Clifford Algebra and Charges of Elementary Fermions

Linearization of expression (1) à la Dirac (with commuting positions and momenta) leads
to Clifford algebra built from the basic elements Ak and Bl , associated with momentum pk

and position xl respectively. We use the following explicit representation:

Ak = σk ⊗ σ0 ⊗ σ1,

Bk = σ0 ⊗ σk ⊗ σ2,

B7 ≡ iA1A2A3B1B2B3 = σ0 ⊗ σ0 ⊗ σ3, (5)

where B7 is the 7th anticommuting element of the algebra.1

In [12] it was shown that when the position-momentum commutation relations are ac-
cepted, one obtains

Rtot ≡ (A · p + B · x)(A · p + B · x) = (p2 + x2) − i

2
[Ak,Bk], (6)

(summation over repeated indices implied) where the last term comes about because xk and
pk do not commute. In [12] it was then furthermore proposed that electric charge Q is equal
to operator 1

6 RtotB7, evaluated for the lowest level of p2 + x2, i.e.

Q = 1

6

(
(p2 + x2)lowest − i

2
[Ak,Bk]

)
B7 ≡ I3 + Y

2
, (7)

with (weak) isospin I3 and (weak) hypercharge Y given by

I3 = B7

2
,

1The product �3
k=1AkBk is the 6D generalization of A1B1 relevant for the 2D phase space. For the latter

case, an identification of such a product with the imaginary unit was proposed in [7].
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Y = − i

6
[Ak,Bk]B7 = 1

3
σk ⊗ σk ⊗ σ0 ≡

∑
k

Yk. (8)

The eigenvalues of I3 are ±1/2, those of ‘partial hypercharges’ Yk are ±1/3, while for the
hypercharge Y we have −1,+1/3,+1/3,+1/3, corresponding to a lepton and a triplet of
quarks respectively. Equation (7) yields then the charges of all eight particles of a single
generation of the Standard Model.

3 Isospin Reversal and Charge Conjugation

Transformations in the phase space and in its Clifford algebra are related by the requirement
of the invariance of A · p + B · x. Below we shall use this invariance to provide phase-
space interpretations of the connections between the particles of a single Standard Model
generation.

3.1 Isospin Reversal

Consider the following reflection in the algebraic counterpart of phase space:

A′ = I1AI−1
1 = A, B′ = I1BI−1

1 = −B, (9)

where In = σ0 ⊗σ0 ⊗σn. Under the above operation, we have B7 → −B7, i → i, and, conse-
quently, this transformation swaps I3 = ± 1

2 sectors, while keeping hypercharge unchanged:

I ′
3 = −I3, Y ′ = Y. (10)

Upon requiring the invariance of the expression A · p + B · x one finds that (9) corresponds
to the following transformation in phase space:

p → p′ = p, x → x′ = −x. (11)

Alternatively, one might consider A′ = I2AI−1
2 = −A, B′ = I2BI−1

2 = B, and p′ = −p,
x′ = x, which is related to (9) via ordinary 3D reflection. Then, (10) still holds. Both types
of reflection correspond to the transformation

[xk,pl] = iδkl → [xk,pl] = −iδkl, (12)

with p2 + x2 unchanged, i.e. we recover the other copy of U(1)⊗ SU(3) (cf. (3)). We prefer
to work with phase-space reflection defined in (9) as it does not affect the momentum of the
particle under consideration.

If lepton L of isospin I3 = +1/2 corresponds to the following division of the six basic
elements of Clifford algebra into the counterparts of canonical momenta, and counterparts
of canonical positions:

(AL,BL) = (A,B), (13)

with (the operators of) canonical momenta pL (positions xL) identified with (the operators
of) physical momenta p (positions x), i.e.:

(pL,xL) = (p,x), (14)
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then its partner L′ of isospin I3 = −1/2 corresponds to

(AL′
,BL′

) = (A,−B), (15)

and

(pL′
,xL′

) = (p,−x). (16)

The choice of (9) for the representation of isospin reversal ensures that the addition of the
canonical momenta of leptons is equivalent to the addition of their physical momenta, inde-
pendently of their eigenvalues of I3.

3.2 Charge Conjugation

As is well known, charge conjugation is closely related to complex conjugation. A possible
corresponding operation in phase space was given in (4). As in the case of phase-space
reflection we prefer to keep the momentum unchanged (so that we go from a particle of a
given physical momentum to its antiparticle of the same physical momentum) and define the
operation of charge conjugation in phase space via:

p̄ = p, x̄ = −x, ī = i∗ = −i, (17)

as is also obtained from the straightforward application of complex conjugation if one takes
xk = i d

dpk
, with pk real. As before, the reason for this choice of the definition of charge

conjugation is that the addition of physical momenta of particles and antiparticles is now
straightforward: one does not have to employ any specific method of inverting the signs of
antiparticle momentum variables. In Clifford algebra the operation of charge conjugation
should be obtained from i → i∗ = −i through:

A → A∗, B → B∗. (18)

Then, we get

A · p + B · x → A∗ · p − B∗ · x. (19)

The condition of the invariance of A · p + B · x under charge conjugation may be satisfied if
it is possible to find a unitary transformation such that A∗ → A,B∗ → −B, i.e. such C that:

Ā = CA∗C−1 = A,

B̄ = CB∗C−1 = −B, (20)

so that a counterpart of (17) is obtained:

Ā = A, B̄ = −B, (and ī = i∗ = −i). (21)

One may check that

C = C−1 = σ2 ⊗ σ2 ⊗ σ3. (22)



2252 Int J Theor Phys (2010) 49: 2246–2262

possesses the required property.2 From (5) one then finds that B7 → B7, whence

I3 → I3, Y → Y. (23)

Thus, the exponent in U = exp(iQ) changes as follows

iQ = i(I3 + Y/2) → −i(I3 + Y/2)
def= iQ̄ = i(Ī3 + Ȳ /2), (24)

i.e. the antiparticles have opposite charges, isospins and hypercharges:

Q̄ = −Q, Ī3 = −I3, Ȳ = −Y. (25)

The antiparticle to any lepton L of isospin I3 = +1/2, i.e. an antilepton L of isospin
Ī3 = −1/2, corresponds to

(AL̄,BL̄, i∗) = (A,−B,−i), (26)

and

(pL̄,xL̄) = (p,−x), (27)

where p and x are the (operators of) physical momenta and positions of an antiparticle. Thus,
apart from i → −i, the difference between particles and antiparticles amounts again to a
reflection in position space. We stress that the difference between the phase space reflection
of (9, 11) and the representation (17, 21) of charge conjugation in phase space is tiny: it is
just the change of the sign in front of free-standing i, without affecting p or x. The Ī3 =
+1/2 isospin partner L̄′ of antilepton L̄ (of (26, 27)) corresponds to

(AL̄′
,BL̄′

, i∗) = (A,B,−i), (28)

(pL̄′
,xL̄′

) = (p,x). (29)

With the above definitions, the additivity of the canonical momenta of leptons and/or antilep-
tons is equivalent to the additivity of their physical momenta, irrespectively of whether we
are dealing with particles, antiparticles, or both particles and antiparticles, and irrespectively
of their values of I3.

4 Lepton-Quark Transformations

Apart from the just discussed discrete transformations corresponding to isospin reversal and
charge conjugation, one may consider lepton-quark transformations. As shown in [12–14],
the transformations from the lepton sector (of Y = −1) to the three quark sectors (defined
by the sets of the eigenvalues ±1/3 of Yk’s such that Y = ∑

k Yk = +1/3) correspond to
specific cases of those phase-space SO(6) transformations which go beyond U(1) ⊗ SU(3)

2In [12] the operation of charge conjugation was defined in a similar way, but with a different C, proportional
to σ2 ⊗ σ2 ⊗ σ2. I now find the latter expression inadequate for a couple of reasons, the requirement of the
invariance of A · p + B · x among them. Adopting prescription (22) changes the sign with which B (and B7)
transforms under charge conjugation (when compared to [12]), but does not affect the conclusions of [13, 14]
since the eigenvalues of B7 and −B7 are identical.
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(and the standard 3D rotations in particular). Among these ‘genuine’ SO(6) transformations
there are, in particular, the following (pairs of) rotations:

p̃1 = p1 cosφ + x3 sinφ, x̃1 = x1 cosφ + p3 sinφ,

x̃3 = x3 cosφ − p1 sinφ, p̃3 = p3 cosφ − x1 sinφ, (30)

which leave (x2,p2) unchanged: p̃2 = p2, x̃2 = x2. Transformation between the lepton sec-
tor and the colour-2 quark sector is obtained when a specific condition is imposed on (30).
This condition amounts to the requirement that the position-momentum commutation rela-
tions in new variables, i.e.

[x̃k, p̃l] = i�kl (31)

be diagonal, and that new canonical positions x̃k (and new canonical momenta p̃k) commute
among themselves. As discussed in [12], a nontrivial case (corresponding to a quark of
colour-2) is obtained for φ = ±π/2, which yields

� =
⎡
⎣−1 0 0

0 1 0
0 0 −1

⎤
⎦ , (32)

with similar formulas for the two analogs of (30) corresponding to (pairs of) rotations leav-
ing (x3,p3) and (x1,p1) unchanged. Equations (30) for φ = ±π/2 define what we mean by
canonical momenta and positions for quarks of colour 2 (up to a redefinition corresponding
to φ = π/2 ↔ φ = −π/2, see later).

Putting aside the above three types of transformations (which interchange positions and
momenta) and the nine types of transformations corresponding to U(1) ⊗ SU(3), one is
left with the three remaining types of SO(6) transformations. These are similar to ordinary
3D rotations, the difference being that rotations in momentum and position spaces are now
performed in opposite senses:

p̃1 = p1 cosφ − p3 sinφ, x̃1 = x1 cosφ + x3 sinφ,

p̃3 = p3 cosφ + p1 sinφ, x̃3 = x3 cosφ − x1 sinφ, (33)

with p2, x2 unchanged. The diagonality condition again requires φ = ±π/2. In both cases,
therefore, only specific discrete cases of the ‘genuine’ phase-space rotations are allowed.

Phase-space transformations of (30, 33) have their obvious counterparts in Clifford al-
gebra. Thus, as discussed in [12], the set of all discrete transformations, leading from any
algebra element Z to its colour-n quark counterpart ZQn, consists of the following four
alternatives (no summation over underlined indices):

ZQn =
{

R0n,±ZR−1
0n,±,

R†
0n,±Z(R†

0n,±)−1,
(34)

with

R0n,± = exp(iφF±n)|φ=π/2 = exp

(
i
π

2
F±n

)
= 1 + iF±n − (F±n)

2,

R†
0n,± = exp(iφF±n)|φ=−π/2 = exp

(
−i

π

2
F±n

)
= 1 − iF±n − (F±n)

2, (35)
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generated by the ‘genuine’ SO(6)/SU(4) generators:

F+n = − i

4
εnkl[Ak,Bl] = 1

2
εnklσk ⊗ σl ⊗ σ3

F−n = − i

4
εnkl(BkBl − AkAl) = 1

2
(σ0 ⊗ σn − σn ⊗ σ0) ⊗ σ0, (36)

corresponding (for n = 2) to (30) and (33) respectively, and satisfying (F±n)
3 = F±n. The

four alternatives of (34) exist because operators Y and I3 are even in Ak , Bl , and therefore
different transformations of Ak , Bl may lead to the same result for Y and I3. In particular, for
a given n, all four transformations (34) change the partial hypercharges Yk (and the isospin
I3) in exactly the same way, which amounts to interchanging the Y = −1 (lepton) sector
with the Y = +1/3 (quark) colour-n sector. (For example, for R0n,+ and R(†)

0n,+ this may be
seen from (8, 37, 39).)

When describing all three colours simultaneously, one might in principle consider vari-
ous combinations of the R0n,±- and R†

0n,±-induced transformations, taking any of the four
options in (34) for a given colour (e.g. choosing either the set {R01,+, R02,+, R03,+}, or the
set {R01,+, R02,−, R†

03,+}, or. . . , etc.). Full symmetry between the three directions for both
position and momentum, as observed in our 3D world, requires however that we admit only
such combinations which do not depend on our way of labelling the three directions with
numbers 1, 2, 3 (because the assignment of labels of, say, a right-handed system of coor-
dinates to the three, yet unlabelled, directions of our ordinary 3D space is arbitrary). This
restricts our study to four sets of transformations only, each set specified by the sense of the
rotation by π/2 (i.e. φ = ±π/2), and by the type of SO(6)/SU(4) generator used (either
F+n or F−n).

Below we will consider the action of the transformations of (34) upon the algebraic
counterparts of momenta and positions, i.e. upon elements Ak and Bl . We start with the set
of R0n,+-induced transformations.

4.1 R0n,+-induced Transformations

The R0n,+-induced (φ = +π/2) transformations of Ak and Bl were evaluated in [15] to be:

A
Qn
k = R0n,+Ak R−1

0n,+ = δnkAn − εnkmBm,

B
Qn
k = R0n,+Bk R−1

0n,+ = δnkBn − εnkmAm. (37)

If we start with lepton L of I3 = +1/2, i.e. with the counterparts of canonical mo-
menta being (AL,BL) = (A,B), the above formulas yield their coloured quark counterparts
(AQn,BQn) = ((A

Qn

1 ,A
Qn

2 ,A
Qn

3 ), (B
Qn

1 ,B
Qn

2 ,B
Qn

3 )). The relevant expressions may be writ-
ten in a transparent matrix form:

AQ ≡
⎡
⎣AQ1

AQ2

AQ3

⎤
⎦ =

⎡
⎣ A1 −B3 +B2

+B3 A2 −B1

−B2 +B1 A3

⎤
⎦ ,

BQ ≡
⎡
⎣BQ1

BQ2

BQ3

⎤
⎦ =

⎡
⎣ B1 −A3 +A2

+A3 B2 −A1

−A2 +A1 B3

⎤
⎦ , (38)
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with Clifford algebra counterparts AQn for canonical momenta and BQn for canonical po-
sitions gathered in row n for the sector of colour n. The imaginary unit i is of course un-
changed as R0n,+iR−1

0n,+ = i for any n. Since i is unaffected, the pair of matrices (AQ,

BQ) must correspond to quarks. Furthermore, since R0n,+I3 R−1
0n,+ = I3, again for any n, our

quarks still have I3 = +1/2.

4.2 R†
0n,+-induced Transformations

The R†
0n,+-induced (φ = −π/2) transformations of Ak and Bl were found in [15] to be:

A
Qn(†)
k = R†

0n,+Ak(R†
0n,+)−1 = δnkAn + εnkmBm,

B
Qn(†)
k = R†

0n,+Bk(R†
0n,+)−1 = δnkBn + εnkmAm. (39)

If we start again with lepton L of isospin I3 = +1/2, i.e. with the counterparts of canonical
momenta being (AL,BL) = (A,B), the above formulas yield their coloured quark counter-
parts (AQn(†),BQn(†)). The corresponding matrices of the Clifford algebra counterparts of
canonical momenta and canonical positions are then:

AQ(†) ≡
⎡
⎣AQ1(†)

AQ2(†)

AQ3(†)

⎤
⎦ =

⎡
⎣ A1 +B3 −B2

−B3 A2 +B1

+B2 −B1 A3

⎤
⎦ ,

BQ(†) ≡
⎡
⎣BQ1(†)

BQ2(†)

BQ3(†)

⎤
⎦ =

⎡
⎣ B1 +A3 −A2

−A3 B2 +A1

+A2 −A1 B3

⎤
⎦ . (40)

Since, as in the previous case, i and I3 are unaffected, the pair of matrices (AQ(†), BQ(†))—
just as the pair (AQ,BQ)—must correspond to quarks of I3 = +1/2.

As discussed in [12–15] and seen above, the F+n-induced transformations lead to some
of the Ak’s being replaced by some of the Bl’s, while their phase-space counterparts, i.e. the
specific cases of transformations (30) (or their analogs) lead to some of physical position
variables playing the rôle of canonical momenta.

4.3 R0n,−- and R†
0n,−-induced Transformations

As discussed in [15], for any fixed n the R0n,−-induced transformations are related to the
R0n,+ via specific U(1) ⊗ SU(3) transformations (with similar statement holding also for
R†

0n,− and R†
0n,+). The R0n,−- (and R†

0n,−-) induced transformations do not swap some Ak’s
with some of the Bl’s, but just rotate A’s and B’s in the opposite senses. When the ordi-
nary 3D rotations are also allowed, the effect of R0n,−- and R†

0n,−-induced transformations
is equivalent to admitting appropriate transformations in the space of canonical positions
only. Thus, they do not really bring in more symmetry between the momentum and position
coordinates that Max Born wanted so badly [4]. Consequently, they are of no interest to us
here.

5 Representations

For a fixed n (take n = 1) we have:

AQ1 = (A1,−B3,+B2), BQ1 = (B1,−A3,+A2),
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AQ1(†) = (A1,+B3,−B2), BQ1(†) = (B1,+A3,−A2). (41)

The above two possibilities for the counterparts of canonical momenta and positions for
quark of colour 1 are related by an ordinary 3D rotation by π around the 1st axis in both
A and B spaces (alternatively, the connection may be provided by appropriate reflections:
B → −B for AQ, and A → −A for BQ).

The corresponding canonical momenta and positions are

pQ1 = (p1,−x3,+x2), xQ1 = (x1,−p3,+p2),

pQ1(†) = (p1,+x3,−x2), xQ1(†) = (x1,+p3,−p2). (42)

As mentioned before, as long as i is unchanged, both (AQ1,BQ1) and (AQ1(†),BQ1(†))

represent algebraic counterparts of canonical variables for quark of colour 1 and isospin
I3 = +1/2. We now choose the first one of the two forms above (i.e. the first rows in (41,
42)) to represent quark of isospin I3 = +1/2 and colour 1. For arbitrary colour n, we thus
have

AQn = R0n,+ALR−1
0n,+,

BQn = R0n,+BLR−1
0n,+. (43)

The choice between the sets of R0n,+ and R†
0n,+-induced transformations is arbitrary, but

once it is done, it has to be strictly adhered to. The situation is analogous to a choice between
(p1,−p3,+p2), obtained from (p1,p2,p3) through a rotation by π/2 around the first axis,
and (p1,+p3,−p2), obtained through a similar rotation by −π/2. Each one of these two
representations (or, in this case, also the original one, i.e. (p1,p2,p3)) may be used. The
condition that the additivity of the momenta of different particles be properly taken care
of requires, however, that only one such form of description is universally chosen for all
particles. For example, for the first convention, the total momentum of a system of two
particles is properly calculated via the addition of the corresponding representatives:

(p
(1)

1 ,−p
(1)

3 ,+p
(1)

2 ) + (p
(2)

1 ,−p
(2)

3 ,+p
(2)

2 ) = (ptot
1 ,−ptot

3 ,+ptot
2 ). (44)

5.1 Quarks

For the convention of (43) and with the explicit forms of AQn and BQn given in (38), the
matrices of the canonical momenta and positions for quarks of isospin I3 = +1/2 are, by
analogy:

P Q ≡
⎡
⎣pQ1

pQ2

pQ3

⎤
⎦ =

⎡
⎢⎣

p1
1 −x1

3 +x1
2

+x2
3 p2

2 −x2
1

−x3
2 +x3

1 p3
3

⎤
⎥⎦ ,

XQ ≡
⎡
⎣xQ1

xQ2

xQ3

⎤
⎦ =

⎡
⎢⎣

x1
1 −p1

3 +p1
2

+p2
3 x2

2 −p2
1

−p3
2 +p3

1 x3
3

⎤
⎥⎦ , (45)

where we have allowed that the expressions on the right, containing the physical momenta
and positions of quarks of different colours, in general may depend on quark colour (hence
superscript n for row n).
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Transition to the sector of I3 = −1/2 quarks is obtained from (43) by the action of R0n,+-
induced transformation upon (AL′

,BL′
) = (A,−B), corresponding to lepton L′ of isospin

I3 = −1/2:

AQ′n = R0n,+AL′ R−1
0n,+ = R0n,+AR−1

0n,+,

BQ′n = R0n,+BL′ R−1
0n,+ = R0n,+(−B)R−1

0n,+. (46)

Thus,

AQ′ =
⎡
⎣ A1 −B3 +B2

+B3 A2 −B1

−B2 +B1 A3

⎤
⎦ = AQ,

BQ′ = −
⎡
⎣ B1 −A3 +A2

+A3 B2 −A1

−A2 +A1 B3

⎤
⎦ = −BQ. (47)

The corresponding matrices of the canonical momenta and positions for quarks of isospin
I3 = −1/2 are

P Q′ =
⎡
⎢⎣

p1
1 −x1

3 +x1
2

+x2
3 p2

2 −x2
1

−x3
2 +x3

1 p3
3

⎤
⎥⎦ = P Q,

XQ′ = −
⎡
⎢⎣

x1
1 −p1

3 +p1
2

+p2
3 x2

2 −p2
1

−p3
2 +p3

1 x3
3

⎤
⎥⎦ = −XQ, (48)

where, as before, we have allowed that the expressions in the middle, containing the physical
momenta and positions of quarks of different colours, in general may depend on quark
colour. On the other hand, for better transparency of the comparison of the I3 = −1/2 and
I3 = +1/2 sectors, we have suppressed the superscript ‘prime’ on physical variables.

Applying the operation of phase-space reflection defined in (9) to the set [(AQ,BQ),

(AQ′
,BQ′

)] (corresponding to [I3 = +1/2, I3 = −1/2]) yields

I1(A
Q,BQ)I−1

1 = (AQ′(†),BQ′(†)),

I1(A
Q′

,BQ′
)I−1

1 = (AQ(†),BQ(†)), (49)

i.e. one obtains representatives for quarks with interchanged eigenvalues of isospin
(±1/2 → ∓1/2), but in the other representation. This is so because I1 R0n,+I−1

1 = R(†)

0n,+,
and is related to a change from a left- to a right-handed labelling of the system of coordi-
nates.

To summarize: just as leptons of isospin I3 = ±1/2 correspond to (AL,±BL) and
(pL,±xL) , so do quarks of isospin I3 = ±1/2 correspond to (AQ,±BQ) and (P Q,±XQ).
Note that the forms of the canonical momenta (P Q) are identical for both isospins.

5.2 Antiquarks

We now recall that the transition to antiparticles is obtained via complex conjugation of (18).
In a lepton sector, this leads to (AL,BL, i) = (A,B, i) → (AL,BL, i∗) = (A,−B,−i) and
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(pL,xL) = (p,x) → (pL,xL) = (p,−x). In the quark sector, this leads to the following ma-
trices for the counterparts of canonical momenta and positions of antiquarks:

(1) for the Ī3 = −1/2 antiparticles of the I3 = +1/2 quarks

AQ =
⎡
⎣ A1 +B3 −B2

−B3 A2 +B1

+B2 −B1 A3

⎤
⎦ ,

BQ =
⎡
⎣−B1 −A3 +A2

+A3 −B2 −A1

−A2 +A1 −B3

⎤
⎦ , (50)

and

P Q =
⎡
⎢⎣

p1
1 +x1

3 −x1
2

−x2
3 p2

2 +x2
1

+x3
2 −x3

1 p3
3

⎤
⎥⎦ ,

XQ =
⎡
⎢⎣

−x1
1 −p1

3 +p1
2

+p2
3 −x2

2 −p2
1

−p3
2 +p3

1 −x3
3

⎤
⎥⎦ . (51)

(2) for the Ī3 = +1/2 antiparticles of the I3 = −1/2 quarks:

AQ
′ =

⎡
⎣ A1 +B3 −B2

−B3 A2 +B1

+B2 −B1 A3

⎤
⎦ = AQ,

BQ
′ = −

⎡
⎣−B1 −A3 +A2

+A3 −B2 −A1

−A2 +A1 −B3

⎤
⎦ = −BQ, (52)

and

P Q
′ =

⎡
⎢⎣

p1
1 +x1

3 −x1
2

−x2
3 p2

2 +x2
1

+x3
2 −x3

1 p3
3

⎤
⎥⎦ = P Q,

XQ
′ = −

⎡
⎢⎣

−x1
1 −p1

3 +p1
2

+p2
3 −x2

2 −p2
1

−p3
2 +p3

1 −x3
3

⎤
⎥⎦ = −XQ. (53)

The pattern of relative signs between all of (45, 48, 51, 53) is closely connected to the struc-
ture of the eigenvalues of I3 and Y . Had we started from the other representation of the
algebraic counterparts of the I3 = +1/2 quarks, i.e. from (AQ(†),BQ(†)), the relevant phase
space representations for all other quarks and antiquarks would have changed accordingly.
In particular, this would amount to a change of sign in front of all physical position coor-
dinates appearing in P Q, P Q′

, P Q̄, and P Q̄′
. The relative signs between the components in

a given direction in phase space would have stayed unchanged, however. Thus, e.g. if xn
k
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enters into canonical momenta of a quark of colour n 	= k with a given (positive or negative)
sign, then xm

k (for n 	= m 	= k) enters with the opposite sign. Furthermore, the relative con-
nection between quarks and antiquarks is independent of whether we start from (AQ,BQ)

or from (AQ(†),BQ(†)). Just as for leptons and antileptons, the quarks and antiquarks are
connected by a reflection in (physical) position space (see (45, 51) or (48, 53)), which may
be symbolically written as:

P Q(pn
k , x

m
l ) = P Q(pn

k ,−xm
l ),

XQ(pn
k , x

m
l ) = XQ(pn

k ,−xm
l ), (54)

accompanied by the change of sign of the free-standing i. This, together with (26, 27) for
leptons, is the phase-space counterpart of the standard interpretation of antiparticles as ‘par-
ticles moving backward in time’. Yet, in the phase-space-based interpretation the concept
of ‘time’ is not introduced in any explicit way. This seems to fit well into the philosophy of
timeless quantum gravity.

6 Discussion and Outlook

In the classical limit, when one goes with the Planck constant to zero, the i ceases to con-
tribute on the r.h.s. of position-momentum commutation relations. With the quantum i ab-
sent, the difference between particles and antiparticles (of a given isospin)—when inter-
preted in terms of classical phase-space concepts—reduces to the reflection of position space
alone. Note that this might have been expected on the basis of the appearance—already in
the case of the classical 3D harmonic oscillator (i.e. no i)—of the U(1) ⊗ SU(3) symmetry
group. There is nothing wrong with the existence of two different classical interpretations of
the connection between particles and antiparticles: the Stückelberg-Feynman interpretation
and the phase-space interpretation herein proposed simply constitute different faces of the
same coin. The advantage of the phase-space picture is that it permits a timeless classical
interpretation of the connection between particles and antiparticles, with timelessness being
a feature deemed welcome for the development of quantum gravity [6, 8].

A very interesting feature of (45, 48) and their charge-conjugate versions of (51, 53) is
the pattern of signs in front of the physical components of phase-space variables (e.g. −x1

3
and +x1

2 in (45)). The negative signs cannot be all simultaneously changed into positive
ones by a redefinition of the type:

(x1
3 , x

1
2 ) → (x ′1

3, x
′1
2) ≡ (−x1

3 , x
1
2 ), (55)

because the preservation of the physical content of (45) requires that such a redefinition
be applied to all relevant position and momentum components simultaneously (i.e., in the
case of the redefinition of (55), to xn

3 , xn
2 with any n, and to the respective components

of momenta). This pattern of signs follows from our physical assumptions (recall also the
discussion just before Sect. 4.1).

Keeping in mind the pattern of signs in (45, 48, 51, 53), we now come to the issue of the
additivity of quark momenta. As already stressed in the introduction, the physical momen-
tum of a system of ordinary classical particles is obtained by adding the physical momenta
of its components, independently of where (in the configuration space) the particles are
located. This additivity carries over to the standard quantum formalism. In our approach
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there exist two seemingly ‘natural’, but different, ways in which the idea of the additivity
of physical momenta of ordinary particles may be generalized to the quark sector. The two
generalizations exist because the concepts of physical and canonical momenta coincide here
for ordinary particles, but are not equivalent for quarks. One may therefore consider either
the additivity of quark physical momenta, or the additivity of quark canonical momenta.
The latter option is possible because—despite the theoretical edifices built—the additivity
of physical momenta of (standardly defined) individual quarks has not been really tested,
as these momenta are never measured. Indeed, we always measure the momenta of quark
conglomerates (i.e. hadrons). In standard approaches we then assume that hadrons are built
of quarks possessing properties of ordinary particles, and in particular, satisfying the stan-
dard way of ensuring the additivity of quark momenta. Now, the whole argument of bringing
more symmetry between physical position and momentum variables suggests that it is the
additivity of canonical momenta which is more natural within our scheme. Consequently,
let us accept that the additivity of the (operators of) physical momenta of ordinary particles
(and antiparticles) is a special case of the general principle of additivity of (the operators
of) canonical momenta. Then, one can apply the concept of additivity of canonical momenta
to the quark sector.

In order to gain some quasi-classical understanding of the situation, consider a quark-
antiquark qnq̄n system for a fixed n (i.e. no superpositions of qq̄ pairs of different colour)
and with a well-defined canonical momentum. Its description should then involve, in partic-
ular, ordinary addition of quark and antiquark physical momenta in the n-th direction. Due
to the opposite signs with which quark and antiquark positions (for any combination of I3

eigenvalues) enter into the expressions for the canonical momenta pQn, pQ̄n, the addition
of the appropriate components of the latter leads to the subtraction of the corresponding
physical position coordinates in directions perpendicular to the physical momentum. Hence,
while individual quarks possess translationally noninvariant canonical momenta, the trans-
lational invariance of their sum, relevant for the composite qq̄ system, is ensured. This has
some similarity to the idea of a translationally invariant string connecting quark and anti-
quark.

Another way of forming translationally invariant expressions from quark canonical mo-
menta is through the addition of canonical momenta of three quarks of different colours. In
this case—again thanks to the different signs with which the physical positions enter into
the expressions for the canonical momenta—all three quarks will conspire together to form
translationally invariant expressions, i.e. x2

3 − x1
3 , x1

2 − x3
2 , x3

1 − x2
1 from (45). (The idea of

quark conspiracy requires also that phase-space variables corresponding to quarks of dif-
ferent colours, when appropriately grouped, form ordinary vectors together.) On the other
hand, a pair of quarks is not sufficient to form translationally invariant expressions. Clearly,
all this looks just like the emergence of mesons and baryons as composite systems built from
unobservable quarks.

Note that a classical picture requires talking about well-defined canonical positions in
addition to well-defined canonical momenta. Here, however, in both meson and baryon cases
we are not dealing with well-defined canonical positions as yet. Thus, in fact, we do not have
strings ‘stretching between’ quarks: our quarks are still not fully localized in the ordinary
3D configuration space. The picture is still quantum.

In order to see if ‘real’ strings can be obtained, one would need a better understanding
of the transition from the quantum to the classical description of Nature. This is the goal
of all emergent-space programs including our ‘emergent phase space’ proposal, and falls
obviously far beyond the scope of this paper. The quasi-classical limit of the quantum picture
to which we are led is certainly weird. Yet, it follows in a logical way from fundamental
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assumptions which, in my opinion, look very natural. Consequently, I am inclined to believe
that it captures an important aspect of physical reality.

The above discussion is intended to show that our proposal for the nature of quarks
has a built-in capacity to explain the phenomenon of quark confinement within a string-
like description. Such a description does not have to be in conflict with the present field-
theoretical QCD approach, which describes what happens at large momenta transfers, not at
large position differences, and does it within a specific theoretical description framework,
built upon the background of ordinary 3D space (or spacetime). In our approach, on the other
hand, this classical background (together with the relevant gauge structure) is expected to
emerge only later, and it is only then that more precise connections to the QCD description
may be sought.

Additivity of ordinary physical momenta may be viewed as resulting from a limiting
case of the additivity of angular momenta, when the point with respect to which angular
momenta are evaluated is shifted to spatial infinity. Thus, additivity of physical momenta
may be traced back to the quantum-level additivity of the spin operators of component par-
ticles. Analogously, additivity of the canonical momenta in the quark sector should also
have a corresponding operator counterpart at the discrete quantum level. It is this counter-
part that would presumably play an important rôle in the construction of properly behaving
protohadronic composite systems.

7 Summary

In this paper we have proposed a phase-space interpretation of the connections between lep-
tons, quarks, and their antiparticles. The interpretation is timeless—which might be relevant
for quantum gravity—and amounts to different relations between physical and canonical
phase-space variables. In particular, some components of the canonical momenta of quarks
are identified with their physical positions, thus lacking invariance under translations. We
suggested that the principle of the additivity of physical momenta for leptons (and other
ordinary particles) is a special case of the additivity of canonical momenta in general. This
generalization was then shown to lead to the emergence of translationally invariant expres-
sions for the qq̄ and qqq systems, a mechanism conjectured to be intimately related to quark
confinement and the existence of mesons and baryons.
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